Ecuaciones trigonometricas
Ecuaciones trigonométricas


Maple, en una ecuación, interpreta directamente los ángulos de las razones trigonométricas como las incógnitas a calcular. Por ejemplo,

> solve(sin(2*x)=tan(x));

π 4 , 3π 4 ,0,π MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqaHapaCaeaacaaI0aaaaiaacYcacqGHsisldaWcaaqaaiaaiodacqaHapaCaeaacaaI0aaaaiaacYcacaaIWaGaaiilaiabec8aWbaa@4134@

Obsérvese que la respuesta sólo da los argumentos que se encuentran en el intervalo [ π,π ] MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaacqGHsislcqaHapaCcaGGSaGaeqiWdahacaGLBbGaayzxaaaaaa@3CF6@

Más aún,

> solve(cos(Pi/6+x)=sin(x));

π 6 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqaHapaCaeaacaaI2aaaaaaa@387A@

omitiendo la respuesta 5π 6 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaSaaaeaacaaI1aGaeqiWdahabaGaaGOnaaaacqGH9aqpdaWcaaqaaiabec8aWbqaaiaaiAdaaaGaey4kaSIaeqiWdahaaa@4058@ , toda vez que 5π 6 = π 6 +π MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaSaaaeaacaaI1aGaeqiWdahabaGaaGOnaaaacqGH9aqpdaWcaaqaaiabec8aWbqaaiaaiAdaaaGaey4kaSIaeqiWdahaaa@4058@ está incluído en la solución general 5π 6 = π 6 + MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaSaaaeaacaaI1aGaeqiWdahabaGaaGOnaaaacqGH9aqpdaWcaaqaaiabec8aWbqaaiaaiAdaaaGaey4kaSIaeqiWdahaaa@4058@

Maple nos proporciona tal solución general, previo aviso y a petición del usuario:

> _EnvAllSolutions := true:

Ahora

> solve(cos(Pi/6+x)=sin(x));

1 6 π+π_Z1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaaGOnaaaacqaHapaCcqGHRaWkcqaHapaCcaGGFbGaamOwaiaaigdacqWI8iIoaaa@3F7A@

donde la expresión _Z1 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaaIXaaabaGaaGOnaaaacqaHapaCcqGHRaWkcqaHapaCcaGGFbGaamOwaiaaigdacqWI8iIoaaa@3F7A@ es fácilmente interpretable por el navegante; para mayor precisión. La ventana es el resultado del comando

> ?solve[details]

Para volver al uso normal de solve , deshacemos el comando _EnvAllSolutions mediante

> _EnvAllSolutions := false:

Así,

> solve( sin(x) = cos(x) - 1, x );

π 2 ,0 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaSaaaeaacqaHapaCaeaacaaIYaaaaiaacYcacaaIWaaaaa@3ACD@

> solve(sec(x) = 2*(1 + cos (x)));

πarccos( 1 2 + 3 2 ),arccos( 3 2 1 2 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaeyOeI0IaciyyaiaackhacaGGJbGaai4yaiaac+gacaGGZbWaaeWaaeaadaWcaaqaaiaaigdaaeaacaaIYaaaaiabgUcaRmaalaaabaWaaOaaaeaacaaIZaaaleqaaaGcbaGaaGOmaaaaaiaawIcacaGLPaaacaGGSaGaciyyaiaackhacaGGJbGaai4yaiaac+gacaGGZbWaaeWaaeaadaWcaaqaamaakaaabaGaaG4maaWcbeaaaOqaaiaaikdaaaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaaaiaawIcacaGLPaaaaaa@4FBC@

Maple resuelve sistemas de ecuaciones trigonométricas

> solve({cos(2*x+y)=1/2,sin(2*x)-sin(y)=sqrt(3)/2},{x,y});

{ x=0,y=  π 3 },{ x= π 2 ,y=  2π 3 },{ x= π 3 ,y= π },{ x= π 6 ,y=0 } MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaacaWG4bGaeyypa0JaaGimaiaacYcacaWG5bGaeyypa0JaaeiiaiabgkHiTmaalaaabaGaeqiWdahabaGaaG4maaaaaiaawUhacaGL9baacaGGSaWaaiWaaeaacaWG4bGaeyypa0ZaaSaaaeaacqaHapaCaeaacaaIYaaaaiaacYcacaWG5bGaeyypa0JaaeiiaiabgkHiTmaalaaabaGaaGOmaiabec8aWbqaaiaaiodaaaaacaGL7bGaayzFaaGaaiilamaacmaabaGaamiEaiabg2da9maalaaabaGaeqiWdahabaGaaG4maaaacaGGSaGaamyEaiabg2da9iaabccacqaHapaCaiaawUhacaGL9baacaGGSaWaaiWaaeaacaWG4bGaeyypa0ZaaSaaaeaacqaHapaCaeaacaaI2aaaaiaacYcacaWG5bGaeyypa0JaaGimaaGaay5Eaiaaw2haaaaa@6801@

> solve({sin(x)*sin(y)=-1/2,cos(x)*cos(y)=-1/2},{x,y});

{ y= arctan( 2_Z 2 1 , 2_Z 2 1 ),x=arctan( 2_Z 2 1 , 2_Z 2 1 ) } MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaacaWG5bGaeyypa0JaaeiiaiaabggacaqGYbGaae4yaiaabshacaqGHbGaaeOBamaabmaabaWaaOaaaeaacaqGYaGaae4xaiaabQfadaahaaWcbeqaaiaabkdaaaGccqGHsislcaqGXaaaleqaaOGaaiilamaakaaabaGaaeOmaiaab+facaqGAbWaaWbaaSqabeaacaqGYaaaaOGaeyOeI0IaaeymaaWcbeaaaOGaayjkaiaawMcaaiaabYcacaWG4bGaeyypa0JaaeyyaiaabkhacaqGJbGaaeiDaiaabggacaqGUbWaaeWaaeaacqGHsisldaGcaaqaaiaabkdacaqGFbGaaeOwamaaCaaaleqabaGaaeOmaaaakiabgkHiTiaabgdaaSqabaGccaGGSaGaeyOeI0YaaOaaaeaacaqGYaGaae4xaiaabQfadaahaaWcbeqaaiaabkdaaaGccqGHsislcaqGXaaaleqaaaGccaGLOaGaayzkaaaacaGL7bGaayzFaaaaaa@6371@

La resolución de la última ecuación y el último sistema ha involucrado las funciones circulares inversas, de las que hablaremos en próximas ventanas.