Consideremos la siguiente matriz
A=(
2
1
2
1
2
2
1
2
3
1
3
)
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabg2da9maabmaabaqbaeqabmWaaaqaamaaL4babaqbaeqabmWaaaqaaiaaikdaaeaacaaIXaaabaaabaaabaGaaGOmaaqaaiaaigdaaeaaaeaaaeaacaaIYaaaaaaaaeaaaeaaaeaaaeaadaqjEaqaauaabeqaciaaaeaacaaIYaaabaGaaGymaaqaaaqaaiaaikdaaaaaaaqaaaqaaaqaaaqaamaaL4babaqbaeqabiGaaaqaaiaaiodaaeaacaaIXaaabaaabaGaaG4maaaaaaaaaaGaayjkaiaawMcaaaaa@4277@
formada por tres bloques de Jordan,
uno de orden 3 asociado al valor propio 2,
otro de orden 2 asociado al mismo valor propio, y
otro de orden 2 asociado al valor propio 3:
Es sencillo calcular su polinomio característico -como el de cualquier matriz triangular:
(x−2)
5
(x−3)
2
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIhacqGHsislcaaIYaGaaiykamaaCaaaleqabaGaaGynaaaakiaacIcacaWG4bGaeyOeI0IaaG4maiaacMcadaahaaWcbeqaaiaaikdaaaaaaa@3FCB@
Ahora su polinomio mínimo debe ser un divisor. Por tanto, será de la forma
(x−2)
a
(x−3)
b
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIhacqGHsislcaaIYaGaaiykamaaCaaaleqabaGaaGynaaaakiaacIcacaWG4bGaeyOeI0IaaG4maiaacMcadaahaaWcbeqaaiaaikdaaaaaaa@3FCB@
donde
0≤a≤5 0≤b≤2
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgsMiJkaadggacqGHKjYOcaaI1aGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaaIWaGaeyizImQaamOyaiabgsMiJkaaikdaaaa@44AC@
Observa que
A−2I=(
0
1
0
1
0
0
1
0
1
1
1
) A−3I=(
−1
1
−1
1
−1
−1
1
−1
0
1
0
)
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgkHiTiaaikdacaWGjbGaeyypa0ZaaeWaaeaafaqabeWadaaabaWaauIhaeaafaqabeWadaaabaGaaGimaaqaaiaaigdaaeaaaeaaaeaacaaIWaaabaGaaGymaaqaaaqaaaqaaiaaicdaaaaaaaqaaaqaaaqaaaqaamaaL4babaqbaeqabiGaaaqaaiaaicdaaeaacaaIXaaabaaabaGaaGimaaaaaaaabaaabaaabaaabaWaauIhaeaafaqabeGacaaabaGaaGymaaqaaiaaigdaaeaaaeaacaaIXaaaaaaaaaaacaGLOaGaayzkaaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaWGbbGaeyOeI0IaaG4maiaadMeacqGH9aqpdaqadaqaauaabeqadmaaaeaadaqjEaqaauaabiqadmaaaeaacqGHsislcaaIXaaabaGaaGymaaqaaaqaaaqaaiabgkHiTiaaigdaaeaacaaIXaaabaaabaaabaGaeyOeI0IaaGymaaaaaaaabaaabaaabaaabaWaauIhaeaafaqaceGacaaabaGaeyOeI0IaaGymaaqaaiaaigdaaeaaaeaacqGHsislcaaIXaaaaaaaaeaaaeaaaeaaaeaadaqjEaqaauaabeqaciaaaeaacaaIWaaabaGaaGymaaqaaaqaaiaaicdaaaaaaaaaaiaawIcacaGLPaaaaaa@5BA9@
Sus potencias tienen siempre un 1 o un -1 en la diagonal,
por lo que no pueden ser cero; en consecuencia, el polinomio mínimo no es ni (x-2)a ni (x-3)b
Es decir, a y b son mayores que 0.
Ahora,
(A−2I)
2
=(
0
0
1
0
0
0
0
0
0
1
2
1
)
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabeWadaaabaWaauIhaeaafaqabeWadaaabaGaaGimaaqaaiaaicdaaeaacaaIXaaabaaabaGaaGimaaqaaiaaicdaaeaaaeaaaeaacaaIWaaaaaaaaeaaaeaaaeaaaeaadaqjEaqaauaabeqaciaaaeaacaaIWaaabaGaaGimaaqaaaqaaiaaicdaaaaaaaqaaaqaaaqaaaqaamaaL4babaqbaeqabiGaaaqaaiaaigdaaeaacaaIYaaabaaabaGaaGymaaaaaaaaaaGaayjkaiaawMcaaiaabccacaqGGaaaaa@429C@
(A−2I)
3
=(
0
0
0
0
0
0
0
0
1
3
1
) (A−3I
)
2
=(
1
−2
1
1
−2
1
1
−2
1
0
0
0
)
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadgeacqGHsislcaaIYaGaamysaiaacMcadaahaaWcbeqaaiaaiodaaaGccqGH9aqpdaqadaqaauaabeqadmaaaeaadaqjEaqaauaabeqadmaaaeaacaaIWaaabaGaaGimaaqaaaqaaaqaaiaaicdaaeaacaaIWaaabaaabaaabaGaaGimaaaaaaaabaaabaaabaaabaWaauIhaeaafaqabeGacaaabaGaaGimaaqaaiaaicdaaeaaaeaacaaIWaaaaaaaaeaaaeaaaeaaaeaadaqjEaqaauaabeqaciaaaeaacaaIXaaabaGaaG4maaqaaaqaaiaaigdaaaaaaaaaaiaawIcacaGLPaaacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabIcacaWGbbGaeyOeI0IaaG4maiaadMeacaGGPaWaaWbaaSqabeaacaaIYaaaaOGaeyypa0ZaaeWaaeaafaqabeWadaaabaWaauIhaeaafaqaceWadaaabaGaaGymaaqaaiabgkHiTiaaikdaaeaacaaIXaaabaaabaGaaGymaaqaaiabgkHiTiaaikdaaeaaaeaaaeaacaaIXaaaaaaaaeaaaeaaaeaaaeaadaqjEaqaauaabiqaciaaaeaacaaIXaaabaGaeyOeI0IaaGOmaaqaaaqaaiaaigdaaaaaaaqaaaqaaaqaaaqaamaaL4babaqbaeqabiGaaaqaaiaaicdaaeaacaaIWaaabaaabaGaaGimaaaaaaaaaaGaayjkaiaawMcaaaaa@5F23@
Por tanto, el producto de matrices por bloques da
(A−2I)
3
(A−3I)
2
=(0)
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadgeacqGHsislcaaIYaGaamysaiaacMcadaahaaWcbeqaaiaaiodaaaGccaGGOaGaamyqaiabgkHiTiaaiodacaWGjbGaaiykamaaCaaaleqabaGaaGOmaaaakiabg2da9iaacIcacaaIWaGaaiykaaaa@441A@
Comprobad vosotros mismos que
(A−2I)
2
(A−3I)
2
≠(0)
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadgeacqGHsislcaaIYaGaamysaiaacMcadaahaaWcbeqaaiaaikdaaaGccaGGOaGaamyqaiabgkHiTiaaiodacaWGjbGaaiykamaaCaaaleqabaGaaGOmaaaakiabgcMi5kaacIcacaaIWaGaaiykaaaa@44DA@
(A−2I)
3
(A−3I)≠(0)
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadgeacqGHsislcaaIYaGaamysaiaacMcadaahaaWcbeqaaiaaiodaaaGccaGGOaGaamyqaiabgkHiTiaaiodacaWGjbGaaiykaiabgcMi5kaacIcacaaIWaGaaiykaaaa@43E8@
En consecuencia, el polinomio mínimo de A es
(x−2)
3
(x−3)
2
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadIhacqGHsislcaaIYaGaaiykamaaCaaaleqabaGaaG4maaaakiaacIcacaWG4bGaeyOeI0IaaG4maiaacMcadaahaaWcbeqaaiaaikdaaaaaaa@3FC9@
|