Vectores propios generalizados
Vectores propios generalizados


Ya se ha comentado que si el índice del valor propio t es k, es posible encontrar un vector T cumpliendo

(AtI) k T=(0)         (AtI) k1 T(0) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadgeacqGHsislcaWG0bGaamysaiaacMcadaahaaWcbeqaaiaadUgaaaGccaWGubGaeyypa0JaaiikaiaaicdacaGGPaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaGGOaGaamyqaiabgkHiTiaadshacaWGjbGaaiykamaaCaaaleqabaGaam4AaiabgkHiTiaaigdaaaGccaWGubGaeyiyIKRaaiikaiaaicdacaGGPaaaaa@5146@

Construiremos los vectores

T, (AtI)T,  (AtI) 2 T, ... ,  (AtI) k1 T MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaacYcacaqGGaGaaiikaiaadgeacqGHsislcaWG0bGaamysaiaacMcacaWGubGaaiilaiaabccacaGGOaGaamyqaiabgkHiTiaadshacaWGjbGaaiykamaaCaaaleqabaGaaGOmaaaakiaadsfacaGGSaGaaeiiaiaac6cacaGGUaGaaiOlaiaabccacaGGSaGaaeiiaiaacIcacaWGbbGaeyOeI0IaamiDaiaadMeacaGGPaWaaWbaaSqabeaacaWGRbGaeyOeI0IaaGymaaaakiaadsfaaaa@5391@

Notemos que el último vector es un vector propio asociado al valor propio t

        

Algunos autores, por motivos que quedarán claros posteriormente, prefieren escribir la familia al revés

(AtI) k1 T,  (AtI) k2 T, ... , (AtI)T, T MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadgeacqGHsislcaWG0bGaamysaiaacMcadaahaaWcbeqaaiaadUgacqGHsislcaaIXaaaaOGaamivaiaacYcacaqGGaGaaiikaiaadgeacqGHsislcaWG0bGaamysaiaacMcadaahaaWcbeqaaiaadUgacqGHsislcaaIYaaaaOGaamivaiaacYcacaqGGaGaaiOlaiaac6cacaGGUaGaaeiiaiaacYcacaqGGaGaaiikaiaadgeacqGHsislcaWG0bGaamysaiaacMcacaWGubGaaiilaiaabccacaWGubaaaa@556E@

Ello da lugar al siguiente concepto

Dado un valor propio t de A se dice cadena de vectores propios generalizados de longitud k a una familia de vectores ( T 0 ,  T 1 , ... ,  T k2 , T k1 ) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadsfadaWgaaWcbaGaaGimaaqabaGccaGGSaGaaeiiaiaadsfadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaeiiaiaac6cacaGGUaGaaiOlaiaabccacaGGSaGaaeiiaiaadsfadaWgaaWcbaGaam4AaiabgkHiTiaaikdaaeqaaOGaaiilaiaadsfadaWgaaWcbaGaam4AaiabgkHiTiaaigdaaeqaaOGaaiykaaaa@498A@   que cumple

  • Tk-1 es un vector propio asociado a t
  • T i+1 =(AtI) T i ,i=0,...k2 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBaaaleaacaWGPbGaey4kaSIaaGymaaqabaGccqGH9aqpcaGGOaGaamyqaiabgkHiTiaadshacaWGjbGaaiykaiaadsfadaWgaaWcbaGaamyAaaqabaGccaGGSaGaamyAaiabg2da9iaaicdacaGGSaGaaiOlaiaac6cacaGGUaGaam4AaiabgkHiTiaaikdaaaa@4A1A@

Las cadenas de vectores propios generalizados también se denominan cadenas de Jordan.