Ya se ha comentado que si el índice del valor propio t es k , es posible
encontrar un vector T cumpliendo
( A − t I )
k
T = ( 0 )
( A − t I )
k − 1
T ≠ ( 0 )
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadgeacqGHsislcaWG0bGaamysaiaacMcadaahaaWcbeqaaiaadUgaaaGccaWGubGaeyypa0JaaiikaiaaicdacaGGPaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaGGOaGaamyqaiabgkHiTiaadshacaWGjbGaaiykamaaCaaaleqabaGaam4AaiabgkHiTiaaigdaaaGccaWGubGaeyiyIKRaaiikaiaaicdacaGGPaaaaa@5146@
Construiremos los vectores
T , ( A − t I ) T ,
( A − t I )
2
T , ... ,
( A − t I )
k − 1
T
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiaacYcacaqGGaGaaiikaiaadgeacqGHsislcaWG0bGaamysaiaacMcacaWGubGaaiilaiaabccacaGGOaGaamyqaiabgkHiTiaadshacaWGjbGaaiykamaaCaaaleqabaGaaGOmaaaakiaadsfacaGGSaGaaeiiaiaac6cacaGGUaGaaiOlaiaabccacaGGSaGaaeiiaiaacIcacaWGbbGaeyOeI0IaamiDaiaadMeacaGGPaWaaWbaaSqabeaacaWGRbGaeyOeI0IaaGymaaaakiaadsfaaaa@5391@
Notemos que el último vector es un vector propio asociado al valor propio t
Algunos autores, por motivos que quedarán claros posteriormente, prefieren escribir la familia al revés
( A − t I )
k − 1
T ,
( A − t I )
k − 2
T , ... , ( A − t I ) T , T
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadgeacqGHsislcaWG0bGaamysaiaacMcadaahaaWcbeqaaiaadUgacqGHsislcaaIXaaaaOGaamivaiaacYcacaqGGaGaaiikaiaadgeacqGHsislcaWG0bGaamysaiaacMcadaahaaWcbeqaaiaadUgacqGHsislcaaIYaaaaOGaamivaiaacYcacaqGGaGaaiOlaiaac6cacaGGUaGaaeiiaiaacYcacaqGGaGaaiikaiaadgeacqGHsislcaWG0bGaamysaiaacMcacaWGubGaaiilaiaabccacaWGubaaaa@556E@
Ello da lugar al siguiente concepto
Dado un valor propio t de A se dice cadena de vectores propios generalizados
de longitud k a una familia de vectores
(
T
0
,
T
1
, ... ,
T
k − 2
,
T
k − 1
)
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadsfadaWgaaWcbaGaaGimaaqabaGccaGGSaGaaeiiaiaadsfadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaeiiaiaac6cacaGGUaGaaiOlaiaabccacaGGSaGaaeiiaiaadsfadaWgaaWcbaGaam4AaiabgkHiTiaaikdaaeqaaOGaaiilaiaadsfadaWgaaWcbaGaam4AaiabgkHiTiaaigdaaeqaaOGaaiykaaaa@498A@
que cumple
Tk-1 es un vector propio asociado a t
T
i + 1
= ( A − t I )
T
i
, i = 0,... k − 2
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBaaaleaacaWGPbGaey4kaSIaaGymaaqabaGccqGH9aqpcaGGOaGaamyqaiabgkHiTiaadshacaWGjbGaaiykaiaadsfadaWgaaWcbaGaamyAaaqabaGccaGGSaGaamyAaiabg2da9iaaicdacaGGSaGaaiOlaiaac6cacaGGUaGaam4AaiabgkHiTiaaikdaaaa@4A1A@
Las cadenas de vectores propios generalizados también se denominan cadenas de Jordan .