Veamos, en primer lugar que la multiplicidad geométrica de un valor propio no puede superar la algebraica.
En efecto, sea A una matriz de orden n y d un valor propio de multiplicidad geométrica r.
Sea (P1, ... ,Pr) una base del subespacio solución del sistema
(dI-A) X = (0); sea Q la matriz de columnas
(P1, ... ,Pr, e1, ... , en)
Suprimamos correlativamente las columnas ej que sean combinación lineal de sus precedentes en Q.
Puesto que el rango de Q es n, obtenemos una matriz P del mismo rango n, y con todas sus columnas libres. Es decir, P es cuadrada de orden y rango n; por tanto, P es regular.
Ahora, las r primeras columnas de P son las de Q, es decir, vectores propios asociados al valor propio d.
Por tanto, AP = (dP1,dP2, ... ,dPr,...)
y, multiplicando por bloques
, P-1AP =
( de1,de2, ... ,der,...)
= B.
B=(
d 0 ... 0 0 * ... *
0 d ... 0 0 * ... *
............................
0 ..........0 d * ... *
............................
0 .........0 0 * ... *
)
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiabg2da9maabmaaeaqabeaacaWGKbGaaeiiaiaabccacaqGGaGaaGimaiaabccacaGGUaGaaiOlaiaac6cacaqGGaGaaeimaiaabccacaqGGaGaaGimaiaabccacaGGQaGaaeiiaiaac6cacaGGUaGaaiOlaiaabccacaGGQaaabaGaaGimaiaabccacaqGGaGaaeiiaiaadsgacaqGGaGaaiOlaiaac6cacaGGUaGaaeiiaiaabcdacaqGGaGaaeiiaiaaicdacaqGGaGaaiOkaiaabccacaGGUaGaaiOlaiaac6cacaqGGaGaaiOkaaqaaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaaabaGaaGimaiaabccacaqGUaGaaeOlaiaab6cacaqGUaGaaeOlaiaab6cacaqGUaGaaeOlaiaab6cacaqGUaGaaeimaiaabccacaqGGaGaamizaiaabccacaGGQaGaaeiiaiaac6cacaGGUaGaaiOlaiaabccacaGGQaaabaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaaabaGaaGimaiaabccacaqGGaGaaeOlaiaab6cacaqGUaGaaeOlaiaab6cacaqGUaGaaeOlaiaab6cacaqGUaGaaeimaiaabccacaqGGaGaaGimaiaabccacaqGGaGaaeOkaiaabccacaGGUaGaaiOlaiaac6cacaqGGaGaaiOkaaaacaGLOaGaayzkaaaaaa@A3C3@
Y su polinomio característico es
det(
x−d 0 ... 0 0 * ... *
0 x−d ... 0 0 * ... *
..........................................
0 ...............0 x−d * ... *
..........................................
0 ..............0 0 * ... *
)
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciizaiaacwgacaGG0bWaaeWaaqaabeqaaiaadIhacqGHsislcaWGKbGaaeiiaiaabccacaqGGaGaaGimaiaabccacaGGUaGaaiOlaiaac6cacaqGGaGaaeimaiaabccacaqGGaGaaeiiaiaabccacaaIWaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaGGQaGaaeiiaiaac6cacaGGUaGaaiOlaiaabccacaGGQaaabaGaaGimaiaabccacaqGGaGaaeiiaiaadIhacqGHsislcaWGKbGaaeiiaiaac6cacaGGUaGaaiOlaiaabccacaqGWaGaaeiiaiaabccacaqGGaGaaeiiaiaaicdacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaacQcacaqGGaGaaiOlaiaac6cacaGGUaGaaeiiaiaacQcaaeaacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6caaeaacaaIWaGaaeiiaiaab6cacaqGUaGaaeOlaiaab6cacaqGUaGaaeOlaiaab6cacaqGUaGaaeOlaiaab6cacaqGUaGaaeOlaiaab6cacaqGUaGaaeOlaiaabcdacaqGGaGaaeiiaiaadIhacqGHsislcaWGKbGaaeiiaiaacQcacaqGGaGaaiOlaiaac6cacaGGUaGaaeiiaiaacQcaaeaacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6cacaGGUaGaaiOlaiaac6caaeaacaaIWaGaaeiiaiaabccacaqGUaGaaeOlaiaab6cacaqGUaGaaeOlaiaab6cacaqGUaGaaeOlaiaab6cacaqGUaGaaeOlaiaab6cacaqGUaGaaeOlaiaabcdacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaaicdacaqGGaGaaeiiaiaabccacaqGGaGaaeOkaiaabccacaGGUaGaaiOlaiaac6cacaqGGaGaaiOkaaaacaGLOaGaayzkaaaaaa@CB88@
Entonces,
det(xI-A) = det(xI-B) =(x-d)rg(x) Finalmente, la multiplicidad algebraica del valor propio
d es, al menos, r.