Metodo de Gauss
Método de Gauss

Si A ¯ MathType@MTEF@5@5@+=feaafeart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakeaaceWGbbGbaebaaaa@3982@    es la matriz ampliada de un sistema lineal de ecuaciones, al hacer operaciones elementales sobre ella obtenemos matrices que corresponden a sistemas equivalentes al dado.

EJEMPLO.

x 2x x +y y y +z 3z +z +t +4t 3t = = = 3 0 1       ( 1 2 1    1 1 1    1 3    1    1    4 3 )   ( x y z t )=( 3 0 1 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaafaqabeWabaaabaGaamiEaaqaaiaaikdacaWG4baabaGaamiEaaaafaqabeWabaaabaGaey4kaSIaamyEaaqaaiabgkHiTiaadMhaaeaacqGHsislcaWG5baaauaabeqadeaaaeaacqGHRaWkcaWG6baabaGaeyOeI0IaaG4maiaadQhaaeaacqGHRaWkcaWG6baaauaabeqadeaaaeaacqGHRaWkcaWG0baabaGaey4kaSIaaGinaiaadshaaeaacqGHsislcaaIZaGaamiDaaaafaqabeWabaaabaGaeyypa0dabaGaeyypa0dabaGaeyypa0daauaabeqadeaaaeaacaaIZaaabaGaaGimaaqaaiaaigdaaaGaaGzbVlaaysW7caaMf8UaeyiLHSQaaGzbVlaaywW7caaMe8+aaeWaaeaafaqabeWabaaabaGaaGymaaqaaiaaikdaaeaacaaIXaaaauaabeqadeaaaeaacaaMe8UaaGymaaqaaiabgkHiTiaaigdaaeaacqGHsislcaaIXaaaauaabeqadeaaaeaacaaMe8UaaGymaaqaaiabgkHiTiaaiodaaeaacaaMe8UaaGymaaaafaqabeWabaaabaGaaGjbVlaaigdaaeaacaaMe8UaaGinaaqaaiabgkHiTiaaiodaaaaacaGLOaGaayzkaaGaaGjbVpaabmaabaqbaeqabqqaaaaabaGaamiEaaqaaiaadMhaaeaacaWG6baabaGaamiDaaaaaiaawIcacaGLPaaacqGH9aqpdaqadaqaauaabeqadeaaaeaacaaIZaaabaGaaGimaaqaaiaaigdaaaaacaGLOaGaayzkaaaaaa@825E@

Operaciones elementales:

x 2x x +y y y +z 3z +z +t +4t 3t = = = 3 0 1 ( 1 2 1    1 1 1    1 3    1    1    4 3 | 3 0 1 ) x+y   +z+t=3    3y5z+2t=6    2y      4t=2 Segunda-2Primera Tercera-Primera ( 1 0 0    1 3 2    1 5    0    1    2 4 | 3 6 2 ) x+y   +z+t=3    y      +2t=1    3y5z+2t=6 -(1/2)Tercera Segunda ( 1 0 0    1 1 3    1    0    5    1    2 2 | 3 1 6 ) x+y   +z+t=3    y      +2t=1          5z+8t=3 Tercera+3Segunda ( 1 0 0    1 1 0    1 0    5 1    2 8 | 3 1 3 ) MathType@MTEF@5@5@+=feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaafaqabeWbdaaaaeaafaqabeWabaaabaGaamiEaaqaaiaaikdacaWG4baabaGaamiEaaaafaqabeWabaaabaGaey4kaSIaamyEaaqaaiabgkHiTiaadMhaaeaacqGHsislcaWG5baaauaabeqadeaaaeaacqGHRaWkcaWG6baabaGaeyOeI0IaaG4maiaadQhaaeaacqGHRaWkcaWG6baaauaabeqadeaaaeaacqGHRaWkcaWG0baabaGaey4kaSIaaGinaiaadshaaeaacqGHsislcaaIZaGaamiDaaaafaqabeWabaaabaGaeyypa0dabaGaeyypa0dabaGaeyypa0daauaabeqadeaaaeaacaaIZaaabaGaaGimaaqaaiaaigdaaaaabaaabaqbaeqabmqaaaqaaaqaaaqaaaaadaqadaqaamaaeiaabaqbaeqabmqaaaqaaiaaigdaaeaacaaIYaaabaGaaGymaaaafaqabeWabaaabaGaaGjbVlaaigdaaeaacqGHsislcaaIXaaabaGaeyOeI0IaaGymaaaafaqabeWabaaabaGaaGjbVlaaigdaaeaacqGHsislcaaIZaaabaGaaGjbVlaaigdaaaqbaeqabmqaaaqaaiaaysW7caaIXaaabaGaaGjbVlaaisdaaeaacqGHsislcaaIZaaaaaGaayjcSdqbaeqabmqaaaqaaaqaaaqaaaaafaqabeWabaaabaGaaG4maaqaaiaaicdaaeaacaaIXaaaaaGaayjkaiaawMcaaaqaaiabgoziVcabaiqabaaabaaaaeaacqGHtgYRaqaabeqaaiaadIhacaaMc8UaaGPaVlabgUcaRiaadMhacaaMc8UaaGjbVlabgUcaRiaadQhacaaMc8UaaGPaVlabgUcaRiaaykW7caaMc8UaaGPaVlaadshacqGH9aqpcaaMc8UaaGPaVlaaykW7caaIZaaabaGaaGjbVlabgkHiTiaaiodacaWG5bGaeyOeI0IaaGynaiaadQhacqGHRaWkcaaIYaGaamiDaiabg2da9iabgkHiTiaaiAdacqWIYkcpaeaacaaMe8UaeyOeI0IaaGOmaiaadMhacaaMf8UaaGjbVlaaysW7caaMc8UaeyOeI0IaaGinaiaadshacqGH9aqpcqGHsislcaaIYaGaeSOSIWdaaeaafaqabeWabaaabaaabaGaae4uaiaabwgacaqGNbGaaeyDaiaab6gacaqGKbGaaeyyaiaab2cacaqGYaGaaeiuaiaabkhacaqGPbGaaeyBaiaabwgacaqGYbGaaeyyaaqaaiaabsfacaqGLbGaaeOCaiaabogacaqGLbGaaeOCaiaabggacaqGTaGaaeiuaiaabkhacaqGPbGaaeyBaiaabwgacaqGYbGaaeyyaaaaaeaafaqabeWabaaabaaabaGaeS4SI4dabaGaeS4SI4daamaabmaabaWaaqGaaeaafaqabeWabaaabaGaaGymaaqaaiaaicdaaeaacaaIWaaaauaabeqadeaaaeaacaaMe8UaaGymaaqaaiabgkHiTiaaiodaaeaacqGHsislcaaIYaaaauaabeqadeaaaeaacaaMe8UaaGymaaqaaiabgkHiTiaaiwdaaeaacaaMe8UaaGimaaaafaqabeWabaaabaGaaGjbVlaaigdaaeaacaaMe8UaaGOmaaqaaiabgkHiTiaaisdaaaaacaGLiWoafaqabeWabaaabaGaaG4maaqaaiabgkHiTiaaiAdaaeaacqGHsislcaaIYaaaaaGaayjkaiaawMcaaaqaaiabgoziVcabaiqabaaabaaaaeaacqGHtgYRaqaabeqaaiaadIhacaaMc8UaaGPaVlabgUcaRiaadMhacaaMc8UaaGjbVlabgUcaRiaadQhacaaMc8UaaGPaVlabgUcaRiaaykW7caaMc8UaaGPaVlaadshacqGH9aqpcaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaiodaaeaacaaMe8UaaGPaVlaaywW7caWG5bGaaGzbVlaaysW7caaMe8UaaGPaVlabgUcaRiaaikdacaWG0bGaeyypa0JaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaIXaGaeSOSIWdabaGaaGjbVlaaykW7cqGHsislcaaIZaGaamyEaiabgkHiTiaaiwdacaWG6bGaey4kaSIaaGOmaiaadshacqGH9aqpcqGHsislcaaI2aGaeSOSIWdaaeaafaqabeWabaaabaaabaGaaeylaiaabIcacaqGXaGaae4laiaabkdacaqGPaGaaeivaiaabwgacaqGYbGaae4yaiaabwgacaqGYbGaaeyyaaqaaiaabofacaqGLbGaae4zaiaabwhacaqGUbGaaeizaiaabggaaaaabaqbaeqabmqaaaqaaaqaaiabloRi+aqaaiabloRi+aaadaqadaqaamaaeiaabaqbaeqabmqaaaqaaiaaigdaaeaacaaIWaaabaGaaGimaaaafaqabeWabaaabaGaaGjbVlaaigdaaeaacaaMc8UaaGymaaqaaiabgkHiTiaaiodaaaqbaeqabmqaaaqaaiaaysW7caaIXaaabaGaaGjbVlaaicdaaeaacaaMe8UaeyOeI0IaaGynaaaafaqabeWabaaabaGaaGjbVlaaigdaaeaacaaMe8UaaGOmaaqaaiaaykW7caaIYaaaaaGaayjcSdqbaeqabmqaaaqaaiaaiodaaeaacaaIXaaabaGaeyOeI0IaaGOnaaaaaiaawIcacaGLPaaaaeaacqGHtgYRaqaabeqaaaqaaaaabaGaey4KH8kaeaqabeaacaWG4bGaaGPaVlaaykW7cqGHRaWkcaWG5bGaaGPaVlaaysW7cqGHRaWkcaWG6bGaaGPaVlaaykW7cqGHRaWkcaaMc8UaaGPaVlaaykW7caWG0bGaeyypa0JaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaIZaaabaGaaGjbVlaaykW7caaMf8UaamyEaiaaywW7caaMe8UaaGjbVlaaykW7cqGHRaWkcaaIYaGaamiDaiabg2da9iaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGymaaqaaiaaysW7caaMc8UaaGzbVlaaysW7caaMe8UaeyOeI0IaaGynaiaadQhacqGHRaWkcaaI4aGaamiDaiabg2da9iabgkHiTiaaiodacqWIYkcpaaqaauaabeqadeaaaeaaaeaaaeaacaqGubGaaeyzaiaabkhacaqGJbGaaeyzaiaabkhacaqGHbGaae4kaiaabodacaqGtbGaaeyzaiaabEgacaqG1bGaaeOBaiaabsgacaqGHbaaaaqaauaabeqadeaaaeaaaeaaaeaacqWIZkIpaaWaaeWaaeaadaabcaqaauaabeqadeaaaeaacaaIXaaabaGaaGimaaqaaiaaicdaaaqbaeqabmqaaaqaaiaaysW7caaIXaaabaGaaGymaaqaaiaaicdaaaqbaeqabmqaaaqaaiaaysW7caaIXaaabaGaaGimaaqaaiaaysW7cqGHsislcaaI1aaaauaabeqadeaaaeaacaaIXaaabaGaaGjbVlaaikdaaeaacaaMc8UaaGioaaaaaiaawIa7auaabeqadeaaaeaacaaIZaaabaGaaGymaaqaaiabgkHiTiaaiodaaaaacaGLOaGaayzkaaaaaaaa@D79F@

El Método de Gauss para obtener un sistema escalonado se corresponde, paso a paso, con el proceso de obtener una matriz escalonada mediante operaciones elementales. Por ello, llamamos Método de Gauss tanto al proceso de escalonamiento de un sistema como al de una matriz. Puedes ampliar información sobre el método de Gauss en el tema de Sistemas Lineales

Método de Gauss

Escalonar una matriz

mediante

operaciones elementales

 

 

Escalonar un sistema lineal

mediante

combinaciones lineales

Podemos manipular un sistema lineal sin más que manipular la matriz de coeficientes A junto con la columna de términos independientes B, es decir, la matriz ampliada A ¯ =(A|B).

A continuación veremos la relación que existe entre el rango de las matrices de coeficientes y ampliada  y el carácter del sistema (compatible-incompatible; determinado-indeterminado).