Ejemplos

Potencia de un número con exponente racional

Significado de a n MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaWGHbWaaWbaaSqabeaacaWGUbaaaaaa@3ACE@  siendo a un número cualquiera y n un número racional

n= 1 q MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaWGUbGaeyypa0ZaaSaaaeaacaaIXaaabaGaamyCaaaaaaa@3C82@

n= p q MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaWGUbGaeyypa0JaaGjbVpaalaaabaGaamiCaaqaaiaadghaaaaaaa@3E49@

n= p q MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaWGUbGaeyypa0JaaGjbVlabgkHiTmaalaaabaGaamiCaaqaaiaadghaaaaaaa@3F36@

a 1 q =b tal que  b q =a MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaWGHbWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaWGXbaaaaaakiaaysW7cqGH9aqpcaaMe8UaamOyaiaabccacaqG0bGaaeyyaiaabYgacaqGGaGaaeyCaiaabwhacaqGLbGaaeiiaiaadkgadaahaaWcbeqaaiaadghaaaGccaaMe8Uaeyypa0JaaGjbVlaadggaaaa@4F4E@

a p q = ( a 1 q ) p = ( a p ) 1 q MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaWGHbWaaWbaaSqabeaadaWcaaqaaiaadchaaeaacaWGXbaaaaaakiaaysW7cqGH9aqpcaaMe8+aaeWaaeaacaWGHbWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaWGXbaaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaamiCaaaakiaaysW7cqGH9aqpcaaMe8+aaeWaaeaacaWGHbWaaWbaaSqabeaacaWGWbaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaWGXbaaaaaaaaa@4F3C@

a p q = ( a p q ) 1 = ( a 1 ) p q

Ejemplos

27 1 3 =3 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaaIYaGaaG4namaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaaG4maaaaaaGccaaMe8Uaeyypa0JaaGjbVlaaiodaaaa@40E1@
5 1 2 = 5 2.236067977 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaaI1aWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaIYaaaaaaakiaaysW7cqGH9aqpcaaMe8+aaOaaaeaacaaI1aaaleqaaOGaaGjbVlabloKi7iaaysW7caaIYaGaaiOlaiaaikdacaaIZaGaaGOnaiaaicdacaaI2aGaaG4naiaaiMdacaaI3aGaaG4naaaa@4CBB@

27 2 3 =9 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaaIYaGaaG4namaaCaaaleqabaWaaSaaaeaacaaIYaaabaGaaG4maaaaaaGccaaMe8Uaeyypa0JaaGjbVlaaiMdaaaa@40E8@
5 5 2 = 5 2 5 55.90169942 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaaI1aWaaWbaaSqabeaadaWcaaqaaiaaiwdaaeaacaaIYaaaaaaakiaaysW7cqGH9aqpcaaMe8UaaGynamaaCaaaleqabaGaaGOmaaaakmaakaaabaGaaGynaaWcbeaakiaaysW7cqWIdjYocaaMe8UaaGynaiaaiwdacaGGUaGaaGyoaiaaicdacaaIXaGaaGOnaiaaiMdacaaI5aGaaGinaiaaikdaaaa@4E72@

27 2 3 = 1 9 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaaIYaGaaG4namaaCaaaleqabaGaeyOeI0IaaGPaVpaalaaabaGaaGOmaaqaaiaaiodaaaaaaOGaaGjbVlabg2da9iaaysW7daWcaaqaaiaaigdaaeaacaaI5aaaaaaa@442B@
5 5 2 = 1 5 2 5 0.01788854383 MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaaI1aWaaWbaaSqabeaacqGHsislcaaMc8+aaSaaaeaacaaI1aaabaGaaGOmaaaaaaGccaaMe8Uaeyypa0JaaGjbVpaalaaabaGaaGymaaqaaiaaiwdadaahaaWcbeqaaiaaikdaaaGcdaGcaaqaaiaaiwdaaSqabaaaaOGaaGjbVlabloKi7iaaysW7caaIWaGaaeOlaiaabcdacaqGXaGaae4naiaabIdacaqG4aGaaeioaiaabwdacaqG0aGaae4maiaabIdacaqGZaaaaa@52E0@

Cerrar la ventana y volver al Módulo Principal