Significado de
a
n
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaWGHbWaaWbaaSqabeaacaWGUbaaaaaa@3ACE@
siendo a un número cualquiera y n un número racional
|
n=
1
q
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaWGUbGaeyypa0ZaaSaaaeaacaaIXaaabaGaamyCaaaaaaa@3C82@
|
n=
p
q
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaWGUbGaeyypa0JaaGjbVpaalaaabaGaamiCaaqaaiaadghaaaaaaa@3E49@
|
n= −
p
q
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaWGUbGaeyypa0JaaGjbVlabgkHiTmaalaaabaGaamiCaaqaaiaadghaaaaaaa@3F36@
|
a
1
q
= b tal que
b
q
= a
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaWGHbWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaWGXbaaaaaakiaaysW7cqGH9aqpcaaMe8UaamOyaiaabccacaqG0bGaaeyyaiaabYgacaqGGaGaaeyCaiaabwhacaqGLbGaaeiiaiaadkgadaahaaWcbeqaaiaadghaaaGccaaMe8Uaeyypa0JaaGjbVlaadggaaaa@4F4E@
|
a
p
q
=
(
a
1
q
)
p
=
(
a
p
)
1
q
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaWGHbWaaWbaaSqabeaadaWcaaqaaiaadchaaeaacaWGXbaaaaaakiaaysW7cqGH9aqpcaaMe8+aaeWaaeaacaWGHbWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaWGXbaaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaamiCaaaakiaaysW7cqGH9aqpcaaMe8+aaeWaaeaacaWGHbWaaWbaaSqabeaacaWGWbaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaWGXbaaaaaaaaa@4F3C@
|
a
−
p
q
=
(
a
p
q
)
−1
=
(
a
−1
)
p
q
|
Ejemplos
|
27
1
3
= 3
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaaIYaGaaG4namaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaaG4maaaaaaGccaaMe8Uaeyypa0JaaGjbVlaaiodaaaa@40E1@
5
1
2
=
5
≃ 2.236067977
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaaI1aWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaIYaaaaaaakiaaysW7cqGH9aqpcaaMe8+aaOaaaeaacaaI1aaaleqaaOGaaGjbVlabloKi7iaaysW7caaIYaGaaiOlaiaaikdacaaIZaGaaGOnaiaaicdacaaI2aGaaG4naiaaiMdacaaI3aGaaG4naaaa@4CBB@
|
27
2
3
= 9
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaaIYaGaaG4namaaCaaaleqabaWaaSaaaeaacaaIYaaabaGaaG4maaaaaaGccaaMe8Uaeyypa0JaaGjbVlaaiMdaaaa@40E8@
5
5
2
=
5
2
5
≃ 55.90169942
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaaI1aWaaWbaaSqabeaadaWcaaqaaiaaiwdaaeaacaaIYaaaaaaakiaaysW7cqGH9aqpcaaMe8UaaGynamaaCaaaleqabaGaaGOmaaaakmaakaaabaGaaGynaaWcbeaakiaaysW7cqWIdjYocaaMe8UaaGynaiaaiwdacaGGUaGaaGyoaiaaicdacaaIXaGaaGOnaiaaiMdacaaI5aGaaGinaiaaikdaaaa@4E72@
|
27
−
2
3
=
1
9
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaaIYaGaaG4namaaCaaaleqabaGaeyOeI0IaaGPaVpaalaaabaGaaGOmaaqaaiaaiodaaaaaaOGaaGjbVlabg2da9iaaysW7daWcaaqaaiaaigdaaeaacaaI5aaaaaaa@442B@
5
−
5
2
=
1
5
2
5
≃ 0.01788854383
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaaI1aWaaWbaaSqabeaacqGHsislcaaMc8+aaSaaaeaacaaI1aaabaGaaGOmaaaaaaGccaaMe8Uaeyypa0JaaGjbVpaalaaabaGaaGymaaqaaiaaiwdadaahaaWcbeqaaiaaikdaaaGcdaGcaaqaaiaaiwdaaSqabaaaaOGaaGjbVlabloKi7iaaysW7caaIWaGaaeOlaiaabcdacaqGXaGaae4naiaabIdacaqG4aGaaeioaiaabwdacaqG0aGaae4maiaabIdacaqGZaaaaa@52E0@
|