∫
(
f(x)+g(x)
)dx
=
∫
f(x)dx+
∫
g(x)dx
|
∫
af(x)dx=a
∫
f(x)dx
para cualquier número a.
|
Si
∫
f(x)dx=F(x)
MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qaaeaacaWGMbGaaiikaiaadIhacaGGPaGaamizaiaadIhacqGH9aqpcaWGgbGaaiikaiaadIhacaGGPaaaleqabeqdcqGHRiI8aaaa@4137@
, entonces
∫
f(ax+b)dx=
1
a
F(ax+b)
MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qaaeaacaWGMbGaaiikaiaadggacaWG4bGaey4kaSIaamOyaiaacMcacaWGKbGaamiEaiabg2da9maalaaabaGaaGymaaqaaiaadggaaaGaamOraiaacIcacaWGHbGaamiEaiabgUcaRiaadkgacaGGPaaaleqabeqdcqGHRiI8aaaa@4846@
|