E J E M P L O S
|
I=
∫
1
x
1−
ln
2
x
dx
MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2da9maapeaabaWaaSaaaeaacaaIXaaabaGaamiEamaakaaabaGaaGymaiabgkHiTiGacYgacaGGUbWaaWbaaSqabeaacaaIYaaaaOGaamiEaaWcbeaaaaGccaWGKbGaamiEaaWcbeqab0Gaey4kIipaaaa@430C@
,
t=lnx
MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabg2da9iGacYgacaGGUbGaamiEaaaa@3ACE@
,
dt=
1
x
dx
MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaadshacqGH9aqpdaWcaaqaaiaaigdaaeaacaWG4baaaiaadsgacaWG4baaaa@3C84@
I=
∫
1
1−
t
2
dt
=arcsint+K=arcsin(lnx)+K
MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2da9maapeaabaWaaSaaaeaacaaIXaaabaWaaOaaaeaacaaIXaGaeyOeI0IaamiDamaaCaaaleqabaGaaGOmaaaaaeqaaaaakiaadsgacaWG0baaleqabeqdcqGHRiI8aOGaeyypa0JaciyyaiaackhacaGGJbGaai4CaiaacMgacaGGUbGaamiDaiabgUcaRiaadUeacqGH9aqpciGGHbGaaiOCaiaacogacaGGZbGaaiyAaiaac6gaciGGOaGaciiBaiaac6gacaWG4bGaaiykaiabgUcaRiaadUeaaaa@55F1@
|
I=
∫
tanx dx=
∫
sinx
cosx
dx
MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2da9maapeaabaGaciiDaiaacggacaGGUbGaamiEaGGaaiab=bcaGiaadsgacaWG4bGaeyypa0daleqabeqdcqGHRiI8aOWaa8qaaeaadaWcaaqaaiGacohacaGGPbGaaiOBaiaadIhaaeaaciGGJbGaai4BaiaacohacaWG4baaaaWcbeqab0Gaey4kIipakiab=bcaGiaadsgacaWG4baaaa@4DB5@
,
t=cosx
MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiabg2da9iGacogacaGGVbGaai4CaiaadIhaaaa@3BBD@
,
dt=−sinx dx
MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaiaadshacqGH9aqpcqGHsislciGGZbGaaiyAaiaac6gacaWG4baccaGae8hiaaIaamizaiaadIhaaaa@404D@
I=−
∫
1
t
dt=−lnt+K=−ln(cosx)+K
MathType@MTEF@5@5@+=feaafiart1ev1aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamysaiabg2da9iabgkHiTmaapeaabaWaaSaaaeaacaaIXaaabaGaamiDaaaaaSqabeqaniabgUIiYdaccaGccqWFGaaicaWGKbGaamiDaiabg2da9iabgkHiTiGacYgacaGGUbGaamiDaiabgUcaRiaadUeacqGH9aqpcqGHsislciGGSbGaaiOBaiaacIcaciGGJbGaai4BaiaacohacaWG4bGaaiykaiabgUcaRiaadUeaaaa@505D@
|