Un plano, p, queda determinado cuando se conocen un
punto, A, y dos vectores
u→
y v→
MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLw
BLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc
9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyDayaalaG
aaeiiaiaabccacaqG5bGaaeiiaiaabccaceWG2bGbaSaaaaa@3B93@
paralelos al mismo (vectores de dirección o vectores directores).
¿Qué condición habrá de cumplir un punto X del espacio para que pertenezca al plano
p?
El punto X estará sobre el plano cuando, y solo cuando, el vector
AX
→
MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzY
bItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0Firpepe
KkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8HaaeaacaWGbbGaamiwaaGaay51Gaaaaa@3949@
sea combinación lineal de
u→
y v→
MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLw
BLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc
9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyDayaalaG
aaeiiaiaabccacaqG5bGaaeiiaiaabccaceWG2bGbaSaaaaa@3B93@
. Así pues, habrán de existir números reales
l y
m
tales que:
AX
→ =λ
u→ +μv
→
MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhi
ov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0
xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8HaaeaacaWGbbGaamiwaaGaay
51GaGaeyypa0Jaeq4UdWMabmyDayaalaGaey4kaSIaeqiVd0MabmODayaalaaaaa@40B4@
Fijado un sistema de referencia con origen en O se tiene:
OX→ =
OA→
+ AX
→
x→ =a
→ + AX
→
MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9w
DYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepa
e9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWhcaqaaiaad+eacaWGybaacaGLxdcacqGH9
aqpdaWhcaqaaiaad+eacaWGbbaacaGLxdcacqGHRaWkdaWhcaqaaiaadgeacaWGybaacaGLxdcaaeaaceWG4bGbaSaacqGH9aqpceWGHbGb
aSaacqGHRaWkdaWhcaqaaiaadgeacaWGybaacaGLxdcaaaaa@4931@
y, en definitiva:
ECUACIÓN VECTORIAL DEL PLANO
x→
=a→ +
λu→ +
μv→
MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbu
LwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9L
q=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEa
yaalaGaeyypa0JabmyyayaalaGaey4kaSIaeq4UdWMabmyDayaalaGaey4kaSIaeqiVd0MabmODayaalaaaaa@4046@
|
Establecido el sistema de referencia es posible sustituir los vectores de la ecuación por sus coordenadas:
(
x, y,
z )=( a
1 , a2
, a3 )
+λ( u1
, u2 ,
u3 )
+μ( v1
, v2 ,
v3 )
( x,
y, z
)=( a1
+λu1 +
μv1 ,
a2 +λu
2 +μv2
, a3 +
λu3 +μ
v3 )
MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBL
nhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqa
qpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaqadaqaaiaad
IhacaGGSaGaaGjbVlaadMhacaGGSaGaaGjbVlaadQhaaiaawIcacaGLPaaacqGH9aqpdaqadaqaaiaadggadaWgaaWcbaGaaGymaaqabaGccaGGS
aGaaGjbVlaadggadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaaGjbVlaadggadaWgaaWcbaGaaG4maaqabaaakiaawIcacaGLPaaacqGHRaWkcqaH7
oaBdaqadaqaaiaadwhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaGjbVlaadwhadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaaGjbVlaadwhadaWga
aWcbaGaaG4maaqabaaakiaawIcacaGLPaaacqGHRaWkcqaH8oqBdaqadaqaaiaadAhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaGjbVlaadAhad
aWgaaWcbaGaaGOmaaqabaGccaGGSaGaaGjbVlaadAhadaWgaaWcbaGaaG4maaqabaaakiaawIcacaGLPaaaaeaadaqadaqaaiaadIhacaGGSaGaa
GjbVlaadMhacaGGSaGaaGjbVlaadQhaaiaawIcacaGLPaaacqGH9aqpdaqadaqaaiaadggadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcqaH7oaBc
aWG1bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqiVd0MaamODamaaBaaaleaacaaIXaaabeaakiaacYcacaaMe8UaamyyamaaBaaaleaacaaIY
aaabeaakiabgUcaRiabeU7aSjaadwhadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaH8oqBcaWG2bWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaay
sW7caWGHbWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaeq4UdWMaamyDamaaBaaaleaacaaIZaaabeaakiabgUcaRiabeY7aTjaadAhadaWgaaWcb
aGaaG4maaqabaaakiaawIcacaGLPaaaaaaa@98E9@
Resultando:
ECUACIONES PARAMÉTRICAS DEL PLANO
r:
{
x= a
1+λ u
1+μ v
1
y= a
2+λ u
2+μ v
2
z= a
3+λ u
3+μ v
3
MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2y
d9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0
Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr
=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaacQdadaGabaqaauaabaqadeaaaeaacaWG4bGae
yypa0JaamyyamaaBaaaleaacaaIXaaabeaakiabgUcaRiabeU7aSjaadwhadaWgaaWcbaGaaGymaaqabaGccqGHRaWk
cqaH8oqBcaWG2bWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamyEaiabg2da9iaadggadaWgaaWcbaGaaGOmaaqabaGccqG
HRaWkcqaH7oaBcaWG1bWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeqiVd0MaamODamaaBaaaleaacaaIYaaabeaaaO
qaaiaadQhacqGH9aqpcaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaeq4UdWMaamyDamaaBaaaleaacaaIZaaab
eaakiabgUcaRiabeY7aTjaadAhadaWgaaWcbaGaaG4maaqabaaaaaGccaGL7baaaaa@5F78@
|
Si en el sistema anterior se toman
l y
m
como incógnitas:
{
u 1
λ+ v 1μ
=x− a 1
u
2λ+ v 2
μ=y− a 2
u 3λ+ v
3μ=z−
a 3
MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbu
LwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9L
q=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaa
eaafaqaaeWabaaabaGaamyDamaaBaaaleaacaaIXaaabeaakiabeU7aSjabgUcaRiaadAhadaWgaaWcbaGaaGymaaqabaGccqaH8oqBcqGH9
aqpcaWG4bGaeyOeI0IaamyyamaaBaaaleaacaaIXaaabeaaaOqaaiaadwhadaWgaaWcbaGaaGOmaaqabaGccqaH7oaBcqGHRaWkcaWG2bWaa
SbaaSqaaiaaikdaaeqaaOGaeqiVd0Maeyypa0JaamyEaiabgkHiTiaadggadaWgaaWcbaGaaGOmaaqabaaakeaacaWG1bWaaSbaaSqaaiaai
odaaeqaaOGaeq4UdWMaey4kaSIaamODamaaBaaaleaacaaIZaaabeaakiabeY7aTjabg2da9iaadQhacqGHsislcaWGHbWaaSbaaSqaaiaai
odaaeqaaaaaaOGaay5Eaaaaaa@5DE4@
Para que el sistema, de tres ecuaciones con dos incógnitas, tenga solución, el rango de la matriz ampliada
ha de ser dos, y su determinante cero:
|
u1 v
1 x−
a1
u2 v
2 y−
a2
u3 v
3 z−
a3
|=0MathType@MTEF@5
@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDha
rqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0Firpep
eKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqWaaeaafaqabeWadaaabaGaamyDamaaBaaaleaacaaIXaaabe
aaaOqaaiaadAhadaWgaaWcbaGaaGymaaqabaaakeaacaWG4bGaeyOeI0IaamyyamaaBaaaleaacaaIXaaabeaaaOqaaiaadwhadaWgaaW
cbaGaaGOmaaqabaaakeaacaWG2bWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamyEaiabgkHiTiaadggadaWgaaWcbaGaaGOmaaqabaaakeaa
caWG1bWaaSbaaSqaaiaaiodaaeqaaaGcbaGaamODamaaBaaaleaacaaIZaaabeaaaOqaaiaadQhacqGHsislcaWGHbWaaSbaaSqaaiaai
odaaeqaaaaaaOGaay5bSlaawIa7aiabg2da9iaaicdaaaa@51BF@
Al desarrollar el determinante resulta:
ECUACIÓN GENERAL O IMPLÍCITA DEL PLANO
Ax+By
+Cz+D=
0MathType@MTEF@5@5@+=feaaguart1ev2aaatCv
AUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rN
CHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0Firp
epeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaadIhacqGHRaWkcaWGcbGaamyEaia
bgUcaRiaadoeacaWG6bGaey4kaSIaamiraiabg2da9iaaicdaaaa@4070@
|
Hay, por último, otra forma de la ecuación del plano denominada
segmentaria
que resulta muy interesante de cara a la representación gráfica del plano.
|